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Abstract -- The discriminant analysis for Similar Handwritten
Chinese Character Recognition (SHCR) is essential for the
improvement of handwritten Chinese character recognition
performance. In this paper, a new manifold based subspace
learning algorithm, Discriminative Locality Alignment (DLA),
is introduced into SHCR. Experimental results demonstrate
that DLA is consistently superior to LDA (Linear Discriminant
Analysis) in terms of discriminate information extraction,
dimension reduction and recognition accuracy. In addition,
DLA reveals some attractive intrinsic properties for numeric
calculation, e.g. it can overcome the matrix singular problem
and small sample size problem in SHCR.
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In recent years, handwritten Chinese character
recognition (HCR) has made great progress in both research
and practical application. Unconstrained cursive online HCR,
however, is still an open problem remaining to be solved, for
it is still challenging to reach high recognition rate
considering the high diversity of handwriting styles and
large capacity of category set [1][2][3][4]. In constrained
HCR, recognition rate can generally reach to over 98.5%; in
unconstrained cursive online HCR, the rate falls to 92.39%
[2], where there is a decrease of nearly 6%.

Many effective methods have been proposed to promote
the recognition rate in unconstrained cursive online HCR.
C.L. Liu [4] proposed a hierarch classifier composed of DFE
and DLQDF. Jin et. al. [6] presented an incremental LDA
(ILDA) model, which can implement writer adaptive
recognition by updating the LDA transformation matrix and
the classifier prototypes in the discriminative feature space.
All of the methods above are concerned with constructing a
global optimized model to improve recognition accuracy..

In fact, one of the main reasons for the performance
degradation in unconstrained cursive online HCR lies in the
subtle resemblance between similar cursive handwritten
characters. In CHRC2010 [2], the average rate of the top ten
candidates reaches up to 98.95%, whereas the first candidate
accuracy falls down to 93%. It reveals that the recognition
enhancement for similar handwritten Chinese character
recognition (SHCR) is crucial for the improvement of the
global recognition performance. Fig. 1 illustrates some
similar cursive samples from the CASIA-OLHWD1 database

[5].
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Therefore, in contrast to the global optimized model, it
also makes sense to propose some ‘local optimized’ methods
targeting on the ‘confusing’ samples.
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Figure 1. Similar samples in handwritten Chinese character from CASIA-

OLHWDI database

In SHCR, discriminate information extraction is
considerably essential [1][8][12]. Liner Discriminate
Analysis (LDA) [7] is one of the widely used discriminate
feature extraction methods in the literature. Traditional LDA,
however, suffers from the following drawbacks. First, it
ignores the local structure properties between the samples,
which makes it fail to discover the nonlinear structure hidden
in the high dimensional data. Second, a large number of
training samples are required to make a good model
approximation, i.e. LDA is confronted with the small sample
size (SSS) problem. Third, the singular problem may arise
when computing the projection matrix. Finally, the reduced
dimension has an upper bound of C—1 where C is the class
number.

To overcome the problems of LDA, we introduces a
state-of-the-art subspace manifold learning approach into
SHCR, which is called Discriminative Locality Alignment
(DLA) [10][11]. DLA is a manifold based dimension
reduction method presented recently [10]. As a manifold
based subspace learning method, DLA have many attractive
properties for SHCR compared to LDA. First, DLA model
focuses on local discriminate structure for each training
sample, which implies the better discriminate performance.
Second, relatively small labeled training samples are enough
for DLA to obtain satisfactory high recognition accuracy.
Third, no singular problem and no upper dimension bound
restriction for dimension reduction in DLA. In addition, the
experiments in this paper show that smaller projection matrix
can be obtained in DLA, whereas the recognition rate
maintains high for SHCR. That means DLA is able to keep a
high accuracy with smaller computing and storage cost,
which is attractive for practical application.

The rest of the paper is organized as follows. Section 2
introduces discriminate feature extraction for SHCR using
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DLA method. Experiments and analysis are presented in
Section 3. Section 4 concludes this paper.

II. PROPOSED METHOD

In this paper, the DLA-based SHCR is consists of the
following three stages:

e Similar samples collection and feature extraction:
Several sets of similar handwritten Chinese are
firstly built using the static candidate generation
technique [12]. Then the 8-directional features [9]
were extracted with D dimensions.

Subspace learning using DLA: In order to find a
proper subspace Y from the training samples set X ,
the projection matrix U is found after the DLA
manifold learning. For the training set X including
N samples, ie. X =[x,...x,]€e R™" | and the
subspace Y e R“Y with dimensions d <D , the

discriminate subspace could be obtained by
Y=U"Xx.
o  (lassification: the minimum Euclidean distance

classifier is implemented to classify the data in
subspace Y .

A. Similar samples collection and feature extraction

Similar sample set is formed by using the static candidate
generation technique presented in [12]. The process is
carried out as follows: First, central sample vectors for each
category and the distance between them are calculated. After
comparing all the distances, / categories that are much closer
than others are selected. Then, a static similar character table
is formed for all categories, each of which has / similar
characters. Second, an unconstrained cursive online HCR is
implemented and the output is the first candidate character.
Third, similar samples for each character are collection
according to the table formed in the first step.

We used the 8-directional features extraction method
proposed by Z.L. Bai and Q.Huo [9] to extract feature for
similar samples.

B. Subspace projection using DLA manifold learning

a) LDA subspace learning

LDA aims at maximizing the distances between means of
each class and minimizing the distances of within-class
scatter simultaneously in the projected sample subspace [11].
The objection function of LDA is given by:

tr(U TSWU )
v trU'S,U) (1)
stUU" =1,
where
c N
S, =22 =m) (" =m))" s 2)

j=1 i=l

1013

M
Sb :ZNj(mj_m)(mj_m)T 5 (3)
j=1
S, is the within-class scatter matrix; S, is the between-
class scatter matrix; m, is the sample mean for the jth class;
m is the sample mean for all samples.

If the original feature space is X =[x,,...,x, ]€ R”Y o
find a proper subspace Y e R“" that preserved the
dominative discriminate information to recognize similar
character effectively, the projection matrix U should be
obtained by maximizing Eq.(1). If S, is nonsingular, then
U can be obtained by solving a conventional eigenvalue
problem of S;Sb. Suppose the subspace dimension is d ;
then U is composed of d eigenvector corresponding to the
d largest eigenvalue. The projected subspace is obtained by
Y=U"X.

b)  DLA subspace learning
Different from the global linear optimization principle in
LDA, DLA aims to preserve the discriminate information in
a local patch instead of the global linear structure of LDA. In
each patch, DLA firstly operates “part optimization” to a
given sample, so that in a low dimensional subspace, the
distance between the given sample and its neighbors in
identical class will be as small as possible, whereas its
neighbors in different class will be as large as possible. Then,
DLA operates “whole alignment” to integrate all the
weighted part optimization to form a global subspace
structure [10].
1)  Part Optimization

The part optimization stage of DLA starts from each
given sample and the corresponding patch. Each patch is
built by the given sample and its neighbors including the
samples from both the same and different classes [10][11].

For a given sample X; and its corresponding patch, we
can find m, closest samples Xser X that from the same
class with x; , and m, closest samples Xy X; that from
different  classes. Let the  training " set  be
X, =[x,x, s Xt 5 X 5ees X, z] . The goal of part optimization
is to find a new low dimensional subspace
Y = [yl.,yl_. see Vs Viseos Vi ]. In the subspace, the between-
class distance is maxir;ﬁzed, whereas the within-class
distance is minimized.

Fig. 2 illustrates the process of part optimization in the
situation whenm, =3,m, =2 . It shows that in the projected
subspace, X; is closer to the samples from identical class (x,
X, X, ), whereas the distance between X; and the samples
from different class (x; x, ) is larger.

The optimization function in part optimization stage is
given by:

m 5 my )
argmin(Y ||y, -, | - ),
Jj=1 p=l

Vi _yip (4)




where  is a scaling factor in [0, 1], which can change the
contribution to optimization function for within-class and
between-class distance.

If we define the coefficients vector and matrix L, that
contains the local geometry property and discriminative
information, then Eq. (5) can be reduced to [10]:

argmintr(Y,L,Y,") (5)
Y,

i

where,

——
o =[l,...1,—B,...- 81 (6)
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Figure 2. The process of part optimization.

2)  Whole alignment
After part optimization stage, we obtain N local
alignment matrixes L (i =1...N) for each sample. In the
whole alignment stage, each L, are summarized according to
sample weighting in a global coordinate to form the global
alignment matrix L [13], then the objection function is given
as:
arg min tr(YL ") 8)

Since Y canbe obtained by Y =U" X, stUU" =1, , Eq.
(8) can be then rewritten as:
argmintr(UT XLXU)
v ()]
stU'U =1,
where U is the projection matrix.

U can be obtained by solving a conventional
eigenvalue problem for XLX”, i.e. then U is composed of
d eigenvector corresponding to the d smallest eigenvalue of
XLx".

C. Classifier

After the 8-directional features [9] are extracted for the
similar handwritten characters, the original features are
projected into low dimensional discriminant subspace using

either LDA or DLA. Then a simple minimum Euclidean
distance classifier is used for recognition.

III. EXPERIMENTS

A. Experimental Data

In this paper, the benchmark dataset comes from the
SCUT-COUCH2009 dataset [14]. SCUT-COUCH2009 is an
online unconstrained Chinese handwriting dataset, which
contains 11 subsets of different vocabularies, including GB1,
GB2, Letters, Digit, Symbol, Word8888 etc, and all the
samples are collected from more than 190 subjects. In the
following experiments, the GB1 subset is used, which
contains 3,755 frequently used simplified Chinese characters
in GB-2312-80 standard. In SHCR experiments, 10 sets of
similar characters are randomly selected. Table 1 lists the
ten similar character sets we used in the following
experiments. Fig.3 shows some similar characters and the
corresponding handwritten samples.

TABLE L. SIMILAR CHARACTERS SETS
Seti First Similar characters
Candidate
1 i e
2 % RV BT
3 & ARG E R E R
4 # o Tk L A A
5 [Ei) HEEEREE IO
6 1 fiR TP STe X Supia
7 7 FE A e E N R R IR R
8 5 SRR AR AUR
9 214 AL SIS B B UL
10 N KL ARRAKSEARN
= A A A e = A 2%
T A T
e 1= 5 E L 4 2 ¥
BB LB e DS
== = —— - — S S -3
J= = A A 4 2z 2 £z
JE ey =z 2 A =
ol BB B Z\
R = = -
720 B B B TE S ZLF
e Y = 1
AoEL Rl BL oz ol A=A
2 2= G = B A 4L =
CE RS
Figure 3. Similar charcter samples and the corresponding handwritten

samples

B. Parameters optimizaion for DLA

Since the parameters setup for DLA is essential for its
performance, we carried out the DLA parameter
optimization experiments before for SHCR. We aims to find
a proper range for the dominant parameters m;,m, in DLA,
where m, is the number of the samples from identical class
in the given patch, and m, is the number of the samples
from other classes in the same given patch. Parameter £ is
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set to an empirical value 0.15 and the reduced dimension is
setto 9.

Suppose 7 is the training sample number in each class,
N is the total training sample number, and C is class
number. We have N=Cxn Then, m and m, could be
chosen in the range of [1,n—1] and [0, N — n] respectively.

Fig. 4 shows the recognition rate against different m,
and m, values using the similar samples table mentioned
above (See Tablel and Fig. 3), which character set with used
“ % 7 as the first candidate. When n =30 , different
combinations of m,,m, pairs result in different recognition
rates All the possible combination of m,n and the
corresponding accuracy are visualized in Fig. 4, where the
red region represented the best performance by DLA.

In this experiment, Fig. 4 shows that, the best
combination of my,m, is m, =29,m, =50 , with the
corresponding accuracy 95.82%. It is worthwhile to note
that when the parameters are chosen tom, =10,m, =30,
the recognition rate can reach to 95.4%, which is a only rate
decrease of less than 0.5% to 95.82 %(m, =29,m, =50).
Since my,m, could be chosen in a reasonable board region,
and considering the computing cost, a sub-optimization
combination m, =10,m, =30 is chosen in the following
experiments for all other similar character sets.

Recognition rates

084l

150 085
20030

Figure 4. Recognition rate vs. 77, and 71, for DLA parameters

optimization

C. DLA evaluation experiments for SHCR

To evaluation the performance of DLA in SHCR, the
comparison experiments between DLA and LDA are carried
out. In the experiments, we compare DLA and LDA in small
training sample size setting (hereafter we denote them as
DLA1 and LDAL respectively) and (relatively) large training
sample size setting (denoted as DLA2 and LDA2
respectively) for the ten similar characters sets listed in Table
I . Note that each class of character has 188 training and
testing samples in total.

In DLA1 and LDAI setting, we randomly select 30 of
188 samples per character for training (i.e.n =30); and in
DLA2 and LDA2 we setn=280. In both the settings, the

remaining samples are used for testing. Fig. 5 shows the
recognition rate versus reduced dimensions for the ten
similar character sets.

For comparison convenience, we arrange the experiment
results in Table Iland Table III for the ten similar character
sets. Table II lists the average recognition rates and the
corresponding reduced dimensions for both DLA and LDA
under two different data settings; whereas Table III lists the
best recognition rates.

TABLE I1. AVERAGE RECOGNITION RATES(%)
Reduced n=30 n=80
Dimension DLA1 LDA1 DLA2 LDA2
1 0.361 0.269 0.358 0.330
2 0.638 0.428 0.608 0.527
3 0.789 0.560 0.791 0.658
4 0.860 0.647 0.865 0.740
5 0.908 0.729 0.912 0.796
6 0.927 0.775 0.933 0.835
7 0.937 0.808 0.944 0.869
8 0.947 0.838 0.957 0.897
9 0.957 0.856 0.963 0.915

D. Analysis of the Results

From Fig. 5, Table 11 and Table TII, the performance of
DLA in SHCR can be analyzed in three aspects:

e In Fig.5 and Table 11, it is shown that in the same
reduced dimensions, the recognition rates of both
DLAI and DLA2 are significantly higher than that
of LDAI and LDA2 respectively. It also shows
when the recognition rate is in the same level, DLA
have a better dimension reduction performance than
LDA. For example, we can see from Table II that
when recognition rate reaches to over 0.85%, the
DLAI1 with reduced dimension of 4 outperforms
LDAT1 with reduced dimension of 9.

e InFig. 5 and Table II, it can be seen that in the same
reduced dimensions, recognition rates in DLA1 and
DLA2 have just a little variation; whereas the rates
in LDAI are consistently lower than LDA2. It
demonstrates that DLA can maintain better
recognition performance than LDA in SHCR when
the training samples size is relatively small.

e From Table III, it is shown that the best recognition
rates in DLA1 and DLA2 are consistently higher
than those in LDAl and LDA2 for all similar
character sets. It confirms us that DLA have better
discriminant recognition performance than LDA for
SHCR.

IV. CONCLUSION

In this paper, a manifold based subspace learning
algorithm, Discriminative Locality Alignment (DLA), has
been introduced for similar handwritten Chinese character



recognition (SHCR). Comparing to the traditional widely
used LDA subspace learning techniques, DLA has shown
many competitive and attractive properties, and it is
consistently superior to LDA. From the experiments, we can
draw the following conclusions:

)

2)

3)

The discriminate information extraction and dimension
reduction performance of DLA is very competitive in
SHCR, for it can consistently achieve better recognition
accuracies and better dimension reduction than LDA in
the SHCR experiments.

In SHCR, DLA is a robust and promising manifold
learning method that overcomes many computation
problems including matrix singular problem, small
sample size problem, and reduced dimension upper
bound problem.

DLA is potentially useful for real world applications,
for it can perform high recognition accuracy with a
smaller projection matrix than that of LDA. That results
in a much smaller storage cost with higher recognition
performance, which could be very useful for many
practical recognition applications.
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